On this page
article
基础算法
本文用 Python 实现一个基本的单纯形算法。主要是讲实现的思路,代码地址在文末。
接口
首先是定义接口,就是明确输入和输出。
定义一个类 SimplexBasic
,它的初始化函数 __init__
的参数就是单纯形算法的输入。
class SimplexBasic:
def __init__(self, A, b, c, s):
"""
A: matrix of coefficients of the constraints
b: vector of right-hand side values
c: vector of coefficients of the objective function
s: vector of indices of the initial basic feasible variables
"""
pass
接下来定义函数 solve
计算最优解。
class SimplexBasic:
# ...
def solve(self):
# solve the problem
pass
由于计算结果不只是解向量,还有目标函数值,基本矩阵等多种信息。为了简单起见,solve
只做求解,它不直接返回结果。
为了得到最优解,可以定义两个函数 solution
返回和 objective
,如下所示。
class SimplexBasic:
# ...
@property
def solution(self):
# returns the solution vector
pass
@property
def objective(self):
# returns the objective function value
pass
总结一下,接口就是这样。
class SimplexBasic:
def __init__(self, A, b, c, s):
"""
A: matrix of coefficients of the constraints
b: vector of right-hand side values
c: vector of coefficients of the objective function
s: vector of indices of the initial basic feasible variables
"""
pass
def solve(self):
# solve the problem
pass
@property
def solution(self):
# returns the solution vector
pass
@property
def objective(self):
# returns the objective function value
pass
假设函数的功能已经实现。我们就可以这样调用。
# example
A = [[3, 1, 1, 0, 0],
[1, 2, 0, 1, 0],
[1, 0, 0, 0, 1]]
b = [120, 160, 35]
c = [-7, -6, 0, 0, 0]
s = [2, 3, 4]
if __name__ == '__main__':
simplex = SimplexBasic(A, b, c, s)
simplex.solve()
print(f"objective value: {simplex.objective}")
print(f"solution vector: {simplex.solution}")
接下来就是去实现上面的函数。
实现
首先是初始化 __init__
函数。用成员变量保存输入参数。_basic_vars
是基矩阵对应的列标;_nonbasic_vars
是非基矩阵对应的列标。
class SimplexBasic:
def __init__(self, A, b, c, s):
"""
A: matrix of coefficients of the constraints
b: vector of right-hand side values
c: vector of coefficients of the objective function
s: vector of indices of the initial basic feasible variables
"""
self.A = np.array(A)
self.b = np.array(b)
self.c = np.array(c)
self.s = s
self.m = len(A)
self.n = len(A[0])
self._basic_vars = s
self._nonbasic_vars = [i for i in range(self.n) if i not in s]
根据 _basic_vars
可以计算出基矩阵 _B
。
class SimplexBasic:
# ...
@property
def _B(self):
# Basic matrix
return self.A[:, self._basic_vars]
于是得到基本解 _x
。
class SimplexBasic:
# ...
@property
def _x(self):
# Solution vector
x = np.zeros(self.n)
x[self._basic_vars] = np.linalg.inv(self._B) @ self.b
return x
@property
def solution(self):
return self._x
这样一来,solution
函数就实现了。
类似地,下面的方法实现了 objective
函数。
class SimplexBasic:
# ...
@property
def _xB(self):
# Basic solution vector
return self._x[self._basic_vars]
@property
def _cB(self):
# Basic cost vector
return self.c[self._basic_vars]
@property
def objective(self):
return self._cB @ self._xB
接下来考虑 solve
函数。迭代的思路如下。
class SimplexBasic:
# ...
def solve(self):
while not self._is_optimal():
# iteration
# 1. find j, the entering column
entering_var = self._find_entering_var()
# 2. givin j, find i, the leaving column
# if unbounded, let i = None
leaving_var = self._find_leaving_var(entering_var)
if leaving_var is None:
# unbounded
return
# 3. update: exchange i and j
self._update(leaving_var, entering_var)
其中
_is_optimal
判断是否最优;_find_entering_var
计算入基变量的下标;_find_leaving_var
计算出基变量的下标;_update
执行入基和出基操作。
这四个函数如何实现,这里不展开。具体可以参考单纯形算法中的细节。
代码
相关代码在 codes/simplex-algorithms
文件夹。
- simplex_basic.py 单纯形算法实现
- common.py 定义解的状态,例如
OPTIMAL
,UNBOUNDED
- test_simplex_basic.py 测试代码
- test-data/basic.json 测试用例
Last updated 05 Apr 2025, 15:26 +0800 .